Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N-Bis(2-cyanoethyl)-p-toluenesulfonamide

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, the geometric parameters are in the normal ranges. The amide N atom is coordinated in an almost trigonal-planar fashion.

Comment

The title compound, (I), is a derivative of p-toluenesulfonamide, which is itself used in pharmaceuticals and dyestuffs. Derivatives of p-toluenesulfonamide, viz. chlor-amine- T and dichloramine-T, are used as strong oxidizing agents (Yathirajan et al., 1980). In view of the importance of (I), its crystal structure is reported here.

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7; MOGUL Version 1.0.1; Allen, 2002).

The coordination of the amide N atom is almost trigonal planar. The sum of the bond angles at N is 354.68°. Furthermore, it is interesting to note that both ethylene links adopt a gauche conformation (Table 1).

Experimental

A mixture of p-toluenesulfonamide $(1.72 \mathrm{~g}, 10 \mathrm{mmol})$, acrylonitrile $(1.35 \mathrm{~g}, 25 \mathrm{mmol})$ and tetrabutylammonium bromide $(0.32 \mathrm{~g}, 1 \mathrm{mmol})$ in tetrahydrofuran (5 ml) was treated with KOH powder $(1.12 \mathrm{~g}$, 20 mmol) at room temperature for 10 h with constant stirring. The tetrahydrofuran solvent was evaporated and the residue was dissolved in diethyl ether (5 ml) and washed thoroughly with water to remove the unreacted sulfonamide. Diethyl ether was then removed by slow evaporation (yield 70%, m.p. 374 K). The product, (I), was recrystallized from methanol.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$Z=2$
$M_{r}=277.34$	$D_{x}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=5.7994(7) \AA$	Cell parameters from 7309
$b=9.1494(12) \AA$	\quad reflections
$c=12.8573(15) \AA$	$\theta=3.9-26.3^{\circ}$
$\alpha=92.152(10)^{\circ}$	$\mu=0.24 \mathrm{~mm}^{-1}$
$\beta=94.282(10)^{\circ}$	$T=173(2) \mathrm{K}$
$\gamma=90.551(10)^{\circ}$	Block, colourless
$V=679.78(14) \AA^{\circ}$	$0.40 \times 0.24 \times 0.14 \mathrm{~mm}$

Received 3 May 2005 Accepted 19 May 2005 Online 10 June 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.080$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hemmige S. Yathirajan, ${ }^{\text {a }}$
Haleyur G. Anilkumar, ${ }^{\text {a }}$
Kuriya M. Lokanatharai, ${ }^{\text {a }}$ Basavegowda Nagaraj ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStrasse 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Figure 1
A perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
$T_{\text {min }}=0.910, T_{\text {max }}=0.969$
7309 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.04$
2696 reflections
173 parameters
H -atom parameters constrained

2696 independent reflections 2389 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-6 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0353 P)^{2}\right. \\
&+0.3573 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

S1-O2	$1.4337(11)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.4756(18)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.4574(11)$	$\mathrm{N} 1-\mathrm{C} 21$	$1.4909(18)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.6341(12)$	$\mathrm{C} 13-\mathrm{N} 14$	$1.147(2)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7885(14)$	$\mathrm{C} 23-\mathrm{N} 24$	$1.141(2)$
			$106.15(6)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	$118.84(7)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	$118.92(11)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$107.96(7)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 21$	$119.46(9)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$106.35(6)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{S} 1$	$116.30(9)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$106.26(7)$	$\mathrm{C} 21-\mathrm{N} 1-\mathrm{S} 1$	
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$110.61(7)$		
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$55.19(17)$	$\mathrm{N} 1-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$-56.53(17)$

All H atoms were located in a difference map but were subsequently positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95,0.98$ and $0.99 \AA$ for aromatic H , methyl H and methylene H atoms, respectively, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ set to 1.2 times $U_{\text {eq }}$ of the parent atom, or 1.5 times $U_{\text {eq }}$ for methyl groups. In addition, the torsion angle about the methyl group was refined.

Data collection: $X-A R E A$ (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

One of the authors (HGA) is grateful to the University of Mysore for permitting him to carry out this research work.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yathirajan, H. S., Mahadevappa, D. S. \& Rangaswamy (1980). Talanta, 27, 5254.

